CONTENTS

EXPLANATION
For whom this book is intended. Its standard
1
The special problems of English for students of science
and technology
1
The texts chosen
4
Characteristics of scientific English generally
5

SUGGESTIONS AS TO HOW THIS BOOK SHOULD BE USED
9

PROLOGUE
The Origins of Modern Science by A. N. Whitehead (iii)*
16

SCIENCE: ITS NATURE AND IMPORTANCE
1 What Science Is by Maurice Goldsmith (i)
21
2 Science and the World's Problems by Professor M. S.
Thacker (i)
25
3 Planning for Science and Technology by Professor
P. M. S. Blackett (ii)
27
4 The Prospects of Pure Science by Sir John Cockcroft (iii)
31

MATTER
5 Elements and Atoms by Maurice Goldsmith (i)
35

LIFE ON EARTH
6 The Past Life of the Earth by Dr Errol J. White (ii)
37
7 The Use of Carbon by Plants by Professor H. K. Porter
and Dr H. Jones (ii)
41
8 Food, Growth and Time by Professor R. A. McCance (ii)
44

SPACE
9 The Evolution of the Universe by Patrick Moore (ii)
48
10 The Scientific Exploration of Space by Sir Harrie
Massey (ii)
53
11 Physiological Problems of Space Flight by Squadron
Leader Peter Howard (ii)
57
12 The Radio Telescope by Sir Bernard Lovell (ii)
63
13 Lunar Explorers by Harold Spencer Jones (ii)
66
14 Exploding Stars (from Discovery) (iii)
69

* i = less advanced; ii = average standard; iii = more advanced.
See note on page 5.
Contents

MATHEMATICS
15 The New World of Mathematics by George A. W. Boehm (ii) 72

CHEMISTRY AND PHYSICS
16 Chemistry by John Read (i) 76
17 The Discovery of Oxygen by Maurice Goldsmith (i) 78
18 Crystal Analysis by Sir William Bragg (iii) 82
19 Heat and Energy by Professor E. N. da C. Andrade (i) 85

ATOMIC SCIENCE
20 The Jubilee of the Atomic Nucleus by Sir Charles Darwin (ii) 88
21 How a Nuclear Power Station Works by Sir John Cockcroft (ii) 92
22 Effects of Radiation (from The Lancet) (iii) 96

POWER, FUEL, WATER AND BUILDING MATERIALS
23 Fuel and Power for the Development of India by Nigel Calder (ii) 99
24 Harnessing Underground Heat (from Discovery) (i) 102
25 The Search for Water beneath the Deserts by Dr Frank Dixey (ii) 105
26 Nigeria: Features and Resources by I. O. Oladapo (i) 110

ENGINEERING
27 The Aswan High Dam by Dr Hassan Zaky (ii) 115
28 Bridge, Tube or Tunnel (from Engineering) (ii) 120
29 Making Steels of Very High Strengths by Arthur Kenneford (ii) 124
30 Reducing Fatigue in Metals used for Aeroplanes (from New Scientist) (iii) 128
31 Wear of a Shaft in its Bearings by Sir Henry R. Ricardo (iii) 131

NOISE
32 The Control of Noise by Dr B. Wheeler Robinson (ii) 134

TELEVISION
33 Technical Problems in Television (from New Scientist) (ii) 139
34 Colour Television by G. F. Newell (ii) 141

SURVIVAL, HEALTH AND MEDICINE
35 The New Birth of Medicine by Sir Clifford Allbutt (iii) 144
36 The Survival Game by Martin Wells (ii) 147
37 Over-Population by Dr A. S. Parkes (ii) 151
38 Coronary Heart Disease by Michael Oliver (ii) 156
39 Malaria Eradication in Africa by Dr L. J. Bruce-Chwatt (ii) 160
40 Death on the Road (from The Lancet) (ii) 163
41 Surgery of Road Accidents (from The Lancet) (ii) 168
42 Artificial Respiration by Professor R. C. Browne (ii) 172
43 Drinking Water (from The Lancet) (i) 175
44 How much Sleep do we Need? by R. T. Wilkinson (ii) 177
45 Animals and Pain by Lord Brain (ii) 181

IN SEARCH OF FOOD
46 The Cultivation of the Indus Valley by Dr Roger Revelle (ii) 187
47 The Transformation of Japanese Agriculture (from New Scientist) (i) 193
48 Modern Views of Fish Migration by Dr P. A. Orkin (iii) 196
49 Forecasting the Weather (from Discovery) (ii) 200

WHERE IS SCIENCE LEADING US?
50 Where is Science Leading Us? by Sir Julian Huxley (ii) 203

EPILOGUE
The Training of Professionals by A. N. Whitehead (iii) 208

Essay subjects 210
Index 211

Exercises at the end of each passage.
PROLOGUE

The Origins of Modern Science by A. N. Whitehead (iii)

A. During the past three centuries, the cosmology derived from science has been asserting itself at the expense of older points of view with their origins elsewhere. The growth of science has practically re-coloured our mentality so that modes of thought which in former times were exceptional are now broadly spread through the educated world. The new mentality is more important than the new science and the new technology. It has altered the metaphysical presuppositions and the imaginative contents of our minds, so that the old stimuli provoke a new response.

B. Perhaps my metaphor of a new colour is too strong. What I mean is just that slightest change of tone which yet makes all the difference. This is exactly illustrated by a quotation from* William James. When he was finishing his great treatise on the Principles of Psychology, he wrote to his brother Henry, "I have to forge every sentence in the teeth of irreducible and stubborn facts."

C. Modern science was born in Europe, but its home is the whole world. In the last two centuries there has been a long and confused impact of Western modes of thought upon the civilisation of Asia. The wise men of the East have been puzzling, and are puzzling, as to what may be the regulative secret of life which can be passed from West to East without the wanton destruction of their own inheritance which they so rightly prize. More and more it is becoming evident that what the West can most readily give to the East is its

science and its scientific outlook. This is transferable from country to country, and from race to race, wherever there is a rational society.

D. Greece was the mother of Europe; and it is to Greece that we must look in order to find the origin of our modern ideas. We all know that on the eastern shores of the Mediterranean there was a very flourishing school of philosophers, deeply interested in theories concerning nature. Their ideas have been transmitted to us, enriched by the genius of Plato and Aristotle. But, with the exception of Aristotle, and it is a large exception, this school of thought had not attained to the complete scientific mentality. In some ways, it was better. The Greek genius was philosophical, lucid and logical. The men of this group were primarily asking philosophical questions. What is the substrate of nature? Is it fire, or earth, or water, or some combination of any two, or of all three? Or is it a mere flux, not reducible to some static material? Mathematics interested them mightily. They invented its generality, analysed its premises, and made notable discoveries of theorems by a rigid adherence to deductive reasoning. Their minds were infected with an eager generality. They demanded clear, bold ideas, and strict reasoning from them. All this was excellent; it was genius; it was ideal preparatory work. But it was not science as we understand it. The patience of minute observation was not nearly so prominent. Their genius was not so apt for the state of imaginative muddled suspense which precedes successful inductive generalisation.

E. Of course there were exceptions, and at the very top: for example, Aristotle and Archimedes. Yet every philosophy is tinged with the colouring of some secret imaginative background. The Greek view of nature, at least that cosmology transmitted from them to later ages, was essentially dramatic. It thus conceived nature as articulated in the way of a work of dramatic art, for the exemplification of general ideas converging to an end. Nature was differentiated so as to
provide its proper end for each thing. I do not say this is a view to which Aristotle would have subscribed without severe reservations, in fact without the sort of reservations which we ourselves would make. But it was the view which subsequent Greek thought extracted from Aristotle and passed on to the Middle Ages. The effect of such an imaginative setting for nature was to damp down the historical spirit. As it was the end which seemed illuminating, why bother about the beginning?

F. Whatever the reason, in the year 1500 Europe knew less about science than Archimedes who died in the year 212 B.C. Nevertheless, medievalism made an important contribution to the formation of the scientific movement. The Middle Ages formed one long training of the intellect of Western Europe in the sense of order. The habit of definite exact thought was implanted by the long dominance of scholastic logic and scholastic divinity. The habit remained after the philosophy had been repudiated, the priceless habit of looking for an exact point and of sticking to it when found. However, the greatest contribution was the belief that every detailed occurrence can be correlated with its antecedents in a perfectly definite manner, exemplifying general principles. Without this belief, the incredible labours of scientists would be without hope. It is this instinctive conviction, vividly poised before the imagination, which is the motive power of research—the conviction that there is a secret, a secret which can be unveiled.

G. Around the year 1500, Greek manuscripts disclosed what the ancients had discovered. Invention stimulated thought, and the sixteenth century saw the rise of modern science. Nothing was settled, though much was opened—new worlds and new ideas. In science, Copernicus and Vesalius may be chosen as representative figures: they typify the new cosmology and the scientific emphasis on direct observation. In the same century, Galileo, reviving the historical spirit, kept enquiring how things happen, whereas his adversaries had a complete theory as to why things happen. It is a great mistake to conceive this historical revolt as an appeal to reason. On the contrary, it was a return to the contemplation of brute fact; and it was based on the recoil from the inflexible rationality of medieval thought.

H. All this prepared the way for the great scientific advance of the seventeenth century. By the end of the century, physics had been founded on a satisfactory basis of measurement. (Logical doctrines had said to the physicist "classify" when they should have said "measure"). The final and adequate exposition was given by Newton. The Newtonian conception has been brilliantly successful throughout the whole modern period. Its first triumph was the law of gravitation. Its cumulative triumph has been the development of dynamic astronomy, of engineering, and of physics.

(from Science and the Modern World,
Cambridge University Press, 1953: first published in 1926)

Note
A. N. Whitehead (1861-1947)—mathematician and philosopher, was a Fellow of Trinity College, Cambridge, then Professor of Applied Mathematics at the Imperial College of Science, London, and finally Professor of Philosophy at Harvard from 1924 till his death.

EXERCISES

1. STAGE TWO) Answer the questions as briefly as possible:
Where did our modern scientific ideas first come from?
What were the Greek philosophers chiefly interested in?
What did the Greek genius produce? What did it lack from a modern scientific point of view? Did this apply to all the Greek philosophers? How does Whitehead describe the Greek view of nature? What advance in scientific knowledge was made during the Middle Ages?
Did medieval scholars make any contribution towards the formation of the scientific movement? When did
the advance in science begin again? Name two causes of its revival. What method did Copernicus and Vesalius consider important? Where did Galileo place his emphasis? And Newton?

2. (Stage Three) Answer in complete sentences: What influence has the growth of science had on our way of thinking? Give an example, from the text, of the modern scientific mentality. What part did the dramatic view of nature play in the development of science? State three contributions of medieval scholarship to the formation of the scientific movement. What was Galileo's attitude to medieval thought? How did Newton's attitude to physics differ from that of the Middle Ages?

3. (Stage Four) A person who specialises in science is called a scientist. He tends to look at every problem from a scientific point of view. Repeat these two sentences, replacing science first by technology, then by psychology, philosophy, mathematics, history, astronomy, metaphysics, physics, engineering, and making the other changes necessary.

5. Verb Noun Adjective
prepare preparation preparatory

Put the following words in the appropriate column, and then complete the table: confuse, convince, destructive, different, emphasis, imagine, infect, origin, reduce, theory. Pronounce each word correctly, paying attention to vowel sounds and syllable stress.

6. (Stage Five) Write 10 to 20 lines on the following, after oral preparation:
a. The "scientific outlook" (referred to in paragraph C).
b. The ancient Greek and the medieval attitude towards the natural world.