The Structure of Technical English

A. J. Herbert

Longman
Section 7	Reading: Steam Locomotives	38
Word Study	40	
Patterns (1) Purpose	41	
(2) Requirements and Necessity	42	

Revision Exercise 43

Section 8	Reading: Condensation and Condensers	46
Word Study	48	
Patterns (1) Means (by + Noun or -ing)	49	
(2) Purpose (Clauses)	50	
(3) Noun + Noun	51	

Section 9	Reading: Centrifugal Governors	53
Word Study	55	
Patterns (1) Time Statements (1)	56	
(2) Function, Duty	57	
(3) Forces (Impel, Exert, Act, Balance, etc.)	58	

Section 10	Reading: Impulse Turbines	60
Word Study	61	
Patterns (1) Contrasted Time Statements (1)	62	
(2) Contrasted Time Statements (2)	63	
(3) Sequence	64	

Section 11	Reading: The Petrol Engine	66
Word Study	68	
Patterns (1) Time Statements (2)	69	
(2) Alternatives	70	
(3) Transmission	71	

Section 12	Reading: The Carburation System	73
Word Study	75	
Patterns (1) Explanations of Cause (1)	76	
(2) Contrasted Relative: Passive	77	
(3) Problems, Difficulties and Solutions	78	

Section 13	Reading: The Jet Engine	79
Word Study	81	
Patterns (1) Explanations of Cause (2)	82	
(2) Prepositions with 'which'	83	
(3) Ratio and Proportion	84	

Section 14	Reading: The Turbo-prop Engine	86
Word Study	87	
Patterns (1) Result (1)	89	
(2) Contrast	90	
(3) Variables	92	

Revision Exercise 93

Section 15	Reading: Aerofoils	96
Word Study	97	
Patterns (1) Result (2)	98	
(2) The Active Relative (-ing)	99	
(3) Exceptions	101	

Section 16	Reading: Radioactivity	103
Word Study	104	
Patterns (1) Conditions (If)	105	
(2) Conditions (Restrictive)	107	
(3) Eventuality	108	

Section 17	Reading: Chain Reaction	111
Word Study	112	
Patterns (1) Manner (1)	114	
(2) When, Once, If, etc. + Past Participle	115	
(3) Arrangements	116	

Section 18	Reading: Reactor Cooling System	118
Word Study	119	
Patterns (1) Uses of the Perfect Tense	120	
(2) Manner (2)	122	
(3) Cases	123	

Section 19	Reading: Conductors and Conductivity	124
Word Study	125	
Patterns (1) It is + Adjective + to	126	
(2) As	127	
(3) Examples	129	

<p>| Section 20 | Reading: Induction Motors | 130 |
| Word Study | 131 |
| Patterns (1) It is + Adjective or Verb + that . . . | 133 |
| (2) Similarity | 134 |
| (3) As (cont.) | 135 |</p>
<table>
<thead>
<tr>
<th>Section 21</th>
<th>Reading: Electrolysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Study</td>
<td>137</td>
</tr>
<tr>
<td>Patterns</td>
<td>(1) Suppose (1)</td>
</tr>
<tr>
<td></td>
<td>(2) Suppose (2)</td>
</tr>
<tr>
<td></td>
<td>(3) Difference</td>
</tr>
</tbody>
</table>

Revision Exercise
143

<table>
<thead>
<tr>
<th>Section 22</th>
<th>Reading: Liquid Flow and Metering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word Study</td>
<td>145</td>
</tr>
<tr>
<td>Patterns</td>
<td>(1) The Final -ing Clause</td>
</tr>
<tr>
<td></td>
<td>(2) Such that, Such as to</td>
</tr>
<tr>
<td></td>
<td>(3) Measurements and Calculations</td>
</tr>
</tbody>
</table>

Section 23
Reading: Liquid Pumps
151
Word Study
152
Patterns
(1) The Final -ing Clause (Result)
(2) In that . . . (points of view, etc.)
(3) Consider, Neglect
156

Section 24
Reading: Petroleum
157
Word Study
159
Patterns
(1) In spite of, Although
(2) Abstract and Generalising Nouns
(3) Typical Noun Constructions
163

Section 25
Reading: Road Foundations
165
Word Study
166
Patterns
(1) Introduced Questions
(2) Formation of Adjectives (1)
(3) Formation of Adjectives (2)
171

Section 26
Reading: Rigid Pavements
174
Word Study
175
Patterns
(1) Some Prefixes
(2) Complex Sentences
(3) Intervals
179

Section 27
Reading: Piles for Foundations
181
Word Study
182
Patterns
(1) That, Those
(2) Phrasal Verbs
(3) Phrasal Verbs (cont.)
185

Section 28
Reading: Suspension Bridges
187
Word Study
188
Patterns
(1) Infinitive of Result
(2) Phrasal Verbs (cont.)
(3) Verbs (cont.)
192

Revision Exercise
193
Key to the Exercises
195
Index of Words
201
Section 8

Reading: Condensation and Condensers

Steam which is admitted to a cold engine cylinder is liable to be partially condensed by contact with the cylinder walls. That part of the steam nearest to the walls is cooled and condenses as a film of water. The volume of steam in the cylinder is thereby considerably reduced, and more steam must be admitted in order that the pressure is sufficiently high to drive the piston along the cylinder. Condensation in a cylinder therefore raises the steam consumption of the engine and thereby lowers its efficiency. It is therefore necessary to devise means of getting rid of this condensation as far as possible, and in modern reciprocating steam engines, condensation problems have been practically eliminated.

This is effected by superheating the steam in the boiler and also by fitting steam jackets round the cylinder. These are fitted into the annular space between the cylinder and the cylinder liner, and are connected to the steam supply. By raising the temperature of the cylinder walls in this way, the outward flow of heat is greatly reduced.

Steam which is exhausted from the cylinder still has a considerable heat content, and in order that this heat energy should not be wasted, the steam is condensed and passed back to the boiler as hot feed water. Rapid condensation is accomplished by means of a condenser. In this condenser, a liquid coolant is circulated through banks of metal tubes. By flowing over these tubes, the steam is caused to transmit some of its heat to the liquid, and a rapid drop in temperature occurs. The steam condenses, and is collected at the bottom of the condenser as condensate. By ensuring that there is no contact between the condensate and the coolant, a pure distilled water can be produced which is ideal for boiler feed water. This type of condenser is commonly used where pure water is not plentiful. The condensate is usually re-heated, so that it may be circulated back to the boiler at an adequate temperature.

In other types of condensers, which are known as jet condensers, the steam is cooled by allowing it to mix intimately with jets of cold water which are injected into the condenser. By this means, rapid condensation takes place, and the mixture of condensate and coolant is withdrawn by means of an extraction pump. The water which is normally used as a coolant cannot usually be utilised in the boiler, and cannot therefore be re-circulated. It is either pumped up to a cooling tower or it gravitates into a cooling pond, and is stored for later use in the condenser.
WORD STUDY

Produce, Product, Production

1. a. The company produces 1000 cars a day. (= makes)
 b. The boiler produces high-pressure steam. (= generates)
 c. Combustion produces very hot gases.

2. a. Most of our industrial products are sold abroad.
 b. These hot gases are the products of combustion.
 c. Petrol and kerosene are products of crude petroleum.

3. a. Motor-car production is increasing rapidly.
 b. Recent production figures show an improvement on last year.
 c. A new line will be set up in the factory.

Consume, Consumption

1. a. The boiler consumes 3 tons of fuel per hour.
 b. The reactor consumes less material than it produces.

2. a. Engine efficiency may be measured by steam consumption.
 b. Family cars are designed for low fuel consumption.

Achieve, Obtain, Effect, Accomplish (= bring about)

1. A reduction in condensation is achieved by the use of steam-jackets.
2. Control of the power output is effected by varying the fuel supply.
3. Rapid closing of the valve is accomplished by fitting a heavy spring.
4. Removal of excess heat is accomplished by means of a radiator.

Withdraw, Extract, Abstract (= take out or draw out)

1. The condensate is withdrawn from the condenser by a pump.
2. The molten metal is extracted from the furnace, ready for casting.
3. Some of the steam is abstracted for heating and other purposes.
4. The exhaust gases are abstracted from the cylinder.
5. The fuel-rods are abstracted from the reactor core mechanically.

Inject (= squirt through jet or nozzle)

1. The fuel is injected into the cylinder by compressed air.
2. The oil is directly into the combustion chamber.
3. Pulverised fuel is injected into the furnace.

Eliminate, Get Rid of

1. The use of oil in hydraulic systems largely eliminates corrosion.
2. In the interview, all except one applicant was eliminated for one reason or another, and this one man got the job.

PATTERNS

1. Means (by + noun or -ing)

In Section 6, we noted that by + an agent sometimes follows the verb in a passive statement.

Large quantities of steam are required by modern industry.

A second and more important use of by is to indicate the means or method of doing something or achieving some result.

It can occur in both active and passive statements.

It often occurs with the phrase by means of.

Sometimes it is possible to use with instead of by before a noun.

With really means with the help of, and there is a slight difference in meaning; it is not advisable to use with unless the meaning is truly instrumental.

The road was cleared by (means of) a bulldozer.
The road was cleared with the help of a bulldozer.

<table>
<thead>
<tr>
<th>Heat losses can be reduced</th>
<th>by</th>
</tr>
</thead>
<tbody>
<tr>
<td>We can reduce heat losses</td>
<td>firebricks, the use of firebricks, lining the furnace with firebricks.</td>
</tr>
</tbody>
</table>

This can be done by means of firebricks, accomplished by lining the furnace with firebricks.

By lining the furnace with firebricks, heat losses can be reduced.

N.B. You will notice in the last example that a clause or participial phrase may come before the main part of the statement.

The word thereby means by means of this.

By means of cannot be used before a participle; only by is possible in such a case.

EXERCISE ONE

Complete these statements in the same way, using the verb in brackets.

1. We reduce the ore to pig-iron it in a blast furnace. (smelt)
2. Production will be greatly increased the new machinery. (introduce)
3. A hot steel bar can be hardened it in water. (quench)
4. Bars of steel can be made them through rollers. (pass)
5. The heat-resistant properties of steel are improved more chromium and nickel. (add)
6. roller bearings, the friction is reduced still further. (use)
7. the bearing in an oil-bath, adequate lubrication is ensured. (dip)
8. a flux to the metal, we can prevent oxidation. (apply)
9. ... forced circulation in the boiler, better results are obtained. (employ)
10. ... a gas rapidly in a cylinder, we raise its temperature. (compress)
11. ... steam over the hot coke, producer gas is formed. (blow)
12. A casting is produced ... molten metal into a mould. (pour)
13. Improved heat-transfer rates were achieved ... fins to the outside of the cylinder. (fit)

EXERCISE TWO

Complete these statements with by, by means of or with, whichever you think most suitable.

1. Production can be greatly increased ... the introduction of new machinery.
2. We can prevent oxidation of the metal ... a flux.
3. Rapid heating in the boiler is achieved ... forced circulation.
4. The work is firmly held in the lathe ... the centres.
5. Better combustion is obtained ... a hemispherical combustion chamber.
6. The heat-resistant properties of the steel can be improved ... the addition of chromium and nickel.
7. Frequent measurements of the bar were made ... a micrometer.
8. Lubricant is forced into the bearing ... pressure of the grease gun against the nipple.
9. A soldered joint may be made ... a soldering iron made of copper.
10. The temperature of the liquid is raised ... the application of heat.
11. Greater speeds can now be attained by modern aircraft ... the new metals which are now being developed.
12. More rapid burning is made possible ... the use of pulverised fuels.

2. Purpose (Clauses)

See also Section 7.

Here is a further structure which is used to indicate purpose.

The steam is superheated in order that it may be fairly dry. should be

EXERCISE

Complete these statements in the same way.

1. Phosphorus is added to the metal ... better castings ... produced.
2. ... the iron ... demagnetised, it is necessary to apply a negative magnetising force.
3. ... the metal ... properly soldered, the metal and the solder should both be made clean.
4. The steam velocity across the tubes is kept high ... any stationary air ... swept away.
5. The storage tank is elevated ... its contents ... withdrawn by gravity.
6. The condenser water is cooled ... it ... re-used in the condenser.
7. The coal gas is sometimes compressed ... condensation in the gas mains ... avoided.
8. A by-pass road is being constructed ... the traffic ... (not) need to go through the city centre.
9. ... deposits ... not form on the tubes, only pure feed water should be used.
10. Water is sprayed into the cylinder ... immediate condensation of the steam ... occur.
11. ... the amount of expansion ... calculated, the coefficient of expansion of the metal must be known.
12. The diameter of the bar should be measured frequently ... too much metal ... (not) taken off.

3. Noun + Noun

The normal way of describing an object in greater detail is by putting an adjective in front of it:

mild steel
hot water
tot steam.

But English allows us very often to put another noun in front of the noun, and sometimes two or three:

steam jacket
heat content
steel bar
carbon dioxide.
The relationship between the two nouns may vary quite a lot, as you can see from these examples:

- Steam consumption = the consumption of steam.
- Metal tubes = tubes made of metal.
- Heat treatment = treatment with or by heat.
- Steam jackets = jackets containing steam.
- Cooling towers = towers for the purpose of cooling.
- Butt weld = weld of the type called 'butt'.
- Friction losses = losses caused by friction.

N.B. The possessive form (')s is very seldom used in technical writing.

EXERCISE

Expand these Noun -> Noun phrases to show the full meaning:

1. air supply
2. water tube
3. heat transfer
4. mercury thermometer
5. concrete structure
6. cylinder walls
7. steel bar
8. stop valve
9. boiler feed water
10. steam chest
11. nickel alloy
12. roller mill
13. power cable
14. cylinder head design
15. blast furnace
16. workshop machinery
17. gear mechanism
18. grease gun
19. lock nut
20. temperature drop
21. petrol engine
22. heat content
23. turret lathe
24. machine testing conditions
25. power transmission problems
26. condenser extractor pump
27. generator power output
28. cylinder condensation losses
29. gravity feed lubrication system
30. fire tube boiler inspection door